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In contrast to the standard derivation of Kirchhoff’s loop law, which invokes electric potential, we show, for
the linear planar electric network in a stationary state at the fixed temperature, that loop law can be derived
from the maximum entropy production principle. This means that the currents in network branches are dis-
tributed in such a way as to achieve the state of maximum entropy production.
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I. INTRODUCTION

Kirchhoff’s laws[1] are the standard part of general phys-
ics courses[2–4]. In electrical engineering they are the start-
ing point for the analysis of stationary processes in electric
networks[5]. In the stationary state, due to the principle of
charge conservation, Kirchhoff’s current law(current law) is
valid. It states that in each node of the network the sum of
ingoing currents equals the sum of outgoing currents. Kirch-
hoff’s loop law (loop law) is based on the assumption that
electric potential is a well defined quantity in any point of the
electric network. Then one can apply the principle of energy
conservation to a macroscopic small amount of the charge
circulating around the loop, i.e., the energy obtained on the
sources should be equal to the dissipated energy. This state-
ment is equivalent to the loop law, which states that the
algebraic sum of electromotive forces(EMF’s) of the sources
is equal to the sum of voltages(potential differences) in the
loop. In this paper we show that the loop law can be derived
for a linear planar network using the maximum entropy pro-
duction principle[6]. This means that stationary state cur-
rents distribute themselves in the branches in such a way as
to maximize the entropy production in the network.

II. MESH CURRENTS AND LOOP LAW

We consider a planar network(see Fig. 1). Assuming that
network parameters, EMF’s and resistances, are fixed, one
can find all currents applying current and loop law to nodes
and loops. However, due to the current law, the currents in
branches are not independent quantities.

Kirchhoff’s laws give no prescription on how to find a set
of independent currents for a given electric network. In the
case of the planar network this problem has been solved by
electrical engineers[5] by introducing the concept of mesh
currents. Let us first define, within the network, the simple

loop (mesh) as the one having no loop within it(loops 1, 2,
and 3 in Fig. 1). We associate a mesh current with each mesh
(J1, J2, andJ3 in Fig. 1). A current in a branch, common to
two neighboring meshes, is an algebraic sum of correspond-
ing mesh currents(see Fig. 2). The current in the outer
branch, the branch which belongs to one mesh only, is equal
to the mesh current. Evidently the mesh currents incorporate
the current law(see Fig. 2). It is easy to prove, by means of
the mathematical induction, that the number of mesh currents
is equal to the number of independent currents in the net-
work. The mesh currents are independent parameters deter-
mining the stationary state of the electric network as the
thermodynamic system. In order to make the analysis of the
network in terms of the mesh currents as simple as possible
we introduce equivalent EMF’s and resistances. The equiva-
lent EMF is equal to the algebraic sum of the EMF’s in a
certain branch and the equivalent resistance is the sum of the
resistances in that branch. We enumerate the meshes and
corresponding mesh currents by single index notation, while
the double index notations is used for the equivalent EMF’s
and for equivalent resistances(Fig. 1). Different indices in
the double index notation appear when the single branch is
shared between two meshes.

Applying the loop law for each mesh loop in terms of
mesh currents we obtain the system of linear equations, the
number of equations being equal to the number of mesh
currents,
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o
j

Eij = RiiJi + o
j

RijsJi − Jjd. s1d

Note that the system of equations(1) incorporates both
Kirchhoff’s laws (due to the definition of the mesh currents).
Here the left hand side of the equation is the algebraic sum of
EMF’s within ith mesh loop. The EMF is positive if mesh
current comes out of its positive pole. Otherwise it is nega-
tive. Evidently it holds true that

Eij = − Eji i Þ j , s2d

and

Rij = Rji . s3d

We stress that the system of equations(1) assumes that the
principle of energy conservation holds for each mesh sepa-
rately (loop law). In the following we show that this system
of equations(1) can be alternatively derived applying the
maximum entropy production principle under the condition
that the principle of energy conservation is valid for the
whole network as the thermodynamic system.

III. CONSERVATION OF THE ENERGY

If the system at the fixed absolute temperatureT releases
heat per unit of timedQ/dt, the corresponding entropy pro-
duction is

diS

dt
=

1

T

dQ

dt
, s4d

where indexi, as it is introduced in the theory of nonequi-
librium processes[7], emphasizes that only irreversible en-
tropy change(rise) is considered.

The entropy production is the function of the thermody-
namic state of a system. The stationary state of resistor at the
fixed temperature is defined by the magnitude and the sense
of the flow of the electric current. Due to the isotropy of the
resistor the entropy production is invariant with respect to
the flow direction of the current,

diS

dt
s− Jd =

diS

dt
sJd. s5d

Assuming that the stationary state of the resistor is close to
its equilibrium state Taylor expansion of the entropy produc-
tion gives

diS

dt
= a + bJ+ cJ2 + dJ3 + OsJ4d. s6d

A free term vanishes since it corresponds to the entropy pro-
duction in the equilibrium state. Due to Eq.(5) coefficients
of all odd powers vanish whilec.0 due todiS/dt.0. Put-
ting c=R/T, whereR is the resistance we get the well known
expression for the dissipated electric powerdQ/dt=RJ2.
Evidently c.0 impliesR.0.

A linear planar network can be separated into sources of
the forces(EMF’s) and the passive part(resistors). In the
stationary state there is no change in internal energy of the
resistors while they convert energy from the sources into the
heat given off to the surroundings. The rate of the energy
conversion is given by

dQ

dt
= o

i

RiiJi
2 +

1

2o
i j

RijsJi − Jjd2. s7d

Energy released by all sources(EMF’s) per unit of time is

dW

dt
= o

i

EiiJi +
1

2o
i j

EijsJi − Jjd. s8d

The factor 1
2, in these equations, appears due to the double

counting in the case of internal branches.
Bearing in mind that resistors do not change their internal

energy we can write, according to the first law of thermody-
namics,

dQ

dt
−

dW

dt
= 0, s9d

i.e., taking into account Eqs.(7) and (8) it holds that

o
i

EiiJi +
1

2o
i j

EijsJi − Jjd = o
i

RiiJi
2 +

1

2o
i j

RijsJi − Jjd2.

s10d

IV. ENTROPY PRODUCTION AND ITS EXTREMUM
IN THE ELECTRIC NETWORK

We argue that Kirchhoff’s loop law follows from the prin-
ciple of the maximum overall entropy production in the net-
work, assuming that the energy conservation(10) is satisfied.
If there aren meshes, andn associated mesh currents, we
have a conditional extremum problem in then-dimensional
linear space.

Assuming that all resistors in the network are at the same
temperatureT the maximum of entropy production occurs at
the same point of then-dimensional space of currents as the
maximum of generated heat[see Eq.(4)].

Standard procedure[8] of solving the conditional extre-
mum introduces Lagrange’s multipliers. In this case one
seeks the extremum of the function

F =
dQ

dt
+ lC, s11d

where due to the condition(10)

FIG. 2. Mesh currents and Kirchhoff’s current law.
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C = o
i

EiiJi +
1

2o
i,j

EijsJi − Jjd

− Fo
i

RiiJi
2 +

1

2o
i,j

RijsJi − Jjd2G = 0. s12d

The functionF now reads

F = s1 − ldFo
i

RiiJi
2 +

1

2o
i,j

RijsJi − Jjd2G
+ lFo

i

EiiJi +
1

2o
i,j

EijsJi − JjdG . s13d

The solution of the system ofn equations

]F

]Ji
= 2s1 − ldFRiiJi + o

j

RijsJi − JjdG + lo
j

Eij = 0,

s14d

that satisfies the condition(12) is represented by the point in
the n-dimensional linear spacehJij in which the function
diS/dt exhibits extremum. The value of Lagrange’s multi-
plier l is uniquely determined by the system of equations
(14) and Eq.(12).

The standard, rather tedious, procedure of determiningl
can be avoided in the following way. Let us multiply Eq.
(14) with Ji and sum over all mesh currents, i.e.,

2s1 − ldFo
i

RiiJi
2 + o

i j

RijsJi − JjdJiG + lo
i j

EijJi = 0.

s15d

Due to the symmetry relations(2) and (3) we have

o
i j

EijJi = − o
i j

EijJj , s16d

and

o
i j

RijJi
2 =

1

2o
i j

RijsJi
2 + Jj

2d. s17d

By making use of Eqs.(16) and (17), Eq. (15) becomes

2s1 − ldFo
i

RiiJi
2 +

1

2o
i j

RijsJi − Jjd2G
+ lFo

i

EiiJi +
1

2o
i j

EijsJi − JjdG = 0. s18d

Substituting the term linear in mesh currents in Eq.(18)
by the term quadratic in mesh currents according to Eq.(12)
we get

s2 − ldFo
i

RiiJi
2 +

1

2o
i j

RijsJi − Jjd2G = 0, s19d

i.e., l=2. One easily finds that the system of equations(14)
for l=2 is just the system of linear equations(1), which
expresses the loop law.

Let us add thatF function for l=2 is then-dimensional
paraboloid put upside down, i.e., its extreme is maximum. In

this way the equivalence between the maximum entropy pro-
duction principle and Kirchhoff’s loop law is established. In
other words we can say that currents in a linear planar net-
work distribute themselves so as to achieve the state of maxi-
mum entropy production.

V. DISCUSSION

There were Ehrenfests[25] who first asked the question if
there exists some function which, like the entropy in the
equilibrium state of an isolated system, achieves its extreme
value in the stationary nonequilibrium state.

The minimum entropy production theorem, attributed to
Prigogine[7], identifies the entropy production due to irre-
versible processes in the system, as a physical function
which becomes extremal in a stationary state. We agree with
Jaynes opinion[9] that Prigogine’s theorem is in fact the
definition of the very special stationary state with zero in-
duced flux, known as the static head state in electrical engi-
neering[5] and in bioenergetics[10]. It is the quasiequilib-
rium state that can be established close to equilibrium in the
case of linear relationship between forces and fluxes, when
induced force is left free to seek its maximal possible value.
Energy conversion then stops at the level of driving force
and corresponding flux, because induced flux vanishes and
cannot be used to perform any work. One cannot obtain phe-
nomenological equations, such as those found in Refs.
[14,15] or Eq. (1), from Prigogine’s theorem, because that
theorem does not have power of a principle. On the other
hand, phenomenological equations, such as Eq.(1), can be
derived from the maximum entropy production principle.

For the one-loop network the maximum entropy produc-
tion principle holds as well. We leave for the reader to repeat
our calculations from Eqs.(11)–(19) in the case of the one-
loop network. The claim that entropy production is minimal
in the stationary state of the one-loop network[11] is wrong
on two accounts. First, authors[11] have presented potential
drops as thermodynamical forces, i.e., they make no distinc-
tion between sources and loads and introduce artifical
“forces” and “currents” in the entropy production expression.
In the stationary state the charge conservation law requires
that only one current flows in the one-loop network, which
must be driven by single thermodynamic force(an algebraic
sum of all EMF’s in the loop). Second, the statement about
entropy production minimization in Ref.[11] implies that
minimum entropy production theorem[7] holds for a such
network. This is not possible, because a minimum of two
thermodynamic forces and corresponding currents and the
condition of vanishing induced current(the static head non-
equilibrium condition) must exist for the minimum entropy
production theorem to hold.

An arbitrary network with no sources of electromotive
forces (EMF’s) was first considered with respect to the en-
tropy production by Kirchhoff[9], Maxwell [12], and Jeans
(see Chap. 357. in Ref.[13]). Kirchhoff postulated a varia-
tional theorem[9], which states that in an arbitrary volume
with fixed surface potential the currents distribute themselves
so as to achieve the state of minimum entropy production.
Since this example contains no sources of EMF’s, it repre-
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sents a continuous extension of discrete network with no
sources which was considered by Maxwell[12] and Jeans
(see Chap. 357. in Ref.[13]). These authors came to the
same conclusion that minimum entropy production governs
current distribution, because they did not consider the energy
conservation principle.

When EMF’s and the energy conservation principle are
taken into account then the principle of the maximum overall
entropy production in the network leads to Kirchhoffs loop
law and accordingly to observed stationary current distribu-
tion as demonstrated in this paper. Let us note that Jeans
considered an arbitrary, not only planar, electric network
with EMF’s too. The maximum entropy production principle
is implicitly present in his theorem(see Chap. 358. in Ref.
[13]). This means that the current distribution in nonplanar
networks is also determined by the maximum entropy pro-
duction principle. Jeans did not define independent currents
in an arbitrary network, as we have done by introducing
mesh currents in full agreement with charge conservation
law. Therefore it is relatively hard to follow his derivation.

Our macroscopic approach is very similar to that of On-
sager who considered the related problem of heat conduction
in an anisotropic crystal[14]. We shall show in a separate
paper(in preparation) that an equivalence exists between the
principle of least dissipation of energy[14,15] and the maxi-
mum entropy production principle. Onsager was aware of the
fact that the stationary state of heat conduction is in fact the
state of maximum entropy production(see the sixth section
in Ref. [14]). The system of equations that describes station-
ary processes can be inferred from the maximum entropy
production principle both in the case of heat conduction and
in the case of linear planar electric network. The advantage
of the maximum entropy production principle is that it offers
a better physical insight through the explicit use of the en-
ergy conservation law in the conditional extremum problem.
The rate of work done must be equal to the heat produced in
a stationary state. The dissipation function originally intro-
duced by Lord Rayleigh[16] and also used by Onsager[14],

obscures the distinction between energy sources and passive
elements in the system, between the rate of the work done
and the heat produced.

Besides macroscopic formulation of the maximum en-
tropy production principle there exists the microscopic for-
mulation too. It is due to Kohler[17] who demonstrated,
starting from the Boltzmann transport equation, that fluxes in
the stationary state of gases distribute themselves in order to
achieve the state of maximum entropy production. Ziman
[18] extended his work to free electron system in solids and
demonstrated how this principle can be used in obtaining
more accurate solutions of the Boltzmann transport equation.
Recently, Dewar[6] has shown, applying Jaynes information
theory formalism of statistical mechanics[19,20], that
stationary states are characterized by maximum entropy
production.

To conclude, it is our belief that the principle of maximum
entropy production is valid in linear nonequilibrium thermo-
dynamics, at least for stationary processes. In other words,
we are convinced that it is just the principle Ehrenfests were
looking for. We stressed in this paper that in each situation
(linear planar electric network in this paper) this principle
must be applied as the conditional extremum problem so that
energy conservation law holds. Two of us have shown re-
cently that biochemical cycle kinetics close to equilibrium
state can be described by an analog electrical circuit[21],
and that modeling of photosynthesis[22] can also be done by
using the maximum entropy production principle. These and
other older[23] and more recent[6,24] results using this
principle show that the present derivation of Kirchhoff’s loop
law in this paper is likely to be only the beginning of the
widespread use of this principle in many different scientific
disciplines.
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