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Kirchhoff’s loop law and the maximum entropy production principle
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In contrast to the standard derivation of Kirchhoff’s loop law, which invokes electric potential, we show, for
the linear planar electric network in a stationary state at the fixed temperature, that loop law can be derived
from the maximum entropy production principle. This means that the currents in network branches are dis-
tributed in such a way as to achieve the state of maximum entropy production.
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I. INTRODUCTION loop (mesh as the one having no loop within (loops 1, 2,

. , and 3 in Fig. 1. We associate a mesh current with each mesh
Kirchhoff's laws[1] are the standard part of general phys—(Jl, J,, andJs in Fig. 1). A current in a branch, common to

ics course$2—4]. In electrical engineering they are the start- .. neighboring meshes, is an algebraic sum of correspond-
ing point for the analysis of stationary processes in electriqng mesh currentgsee Fig. 2 The current in the outer
networks[5]. In the stationary state, due to the principle of pranch, the branch which belongs to one mesh only, is equal
charge conservation, Kirchhoff’s current ldaurrent [aw is o the mesh current. Evidently the mesh currents incorporate
valid. It states that in each node of the network the sum ofhe current law(see Fig. 2 It is easy to prove, by means of
ingoing currents equals the sum of outgoing currents. Kirchthe mathematical induction, that the number of mesh currents
hoff’s loop law (loop law) is based on the assumption that js equal to the number of independent currents in the net-
electric potential is a well defined quantity in any point of the york. The mesh currents are independent parameters deter-
electric network. Then one can apply the principle of energymining the stationary state of the electric network as the
conservation to a macroscopic small amount of the charggermodynamic system. In order to make the analysis of the
circulating around the loop, i.e., the energy obtained on th¢etwork in terms of the mesh currents as simple as possible
sources should be equal to the dissipated energy. This stalge introduce equivalent EMF’s and resistances. The equiva-
ment is equivalent to the loop law, which states that theent EMF is equal to the algebraic sum of the EMF's in a
algebraic sum of electromotive forcSMF's) of the sources  certain branch and the equivalent resistance is the sum of the
is equal to the sum of voltaggpotential differencesin the  yesistances in that branch. We enumerate the meshes and
loop. In this paper we show that the loop law can be derivegtorresponding mesh currents by single index notation, while
for a linear planar network using the maximum entropy pro-the double index notations is used for the equivalent EMF’s
duction principle[6]. This means that stationary state cur- gnq for equivalent resistanceéig. 1). Different indices in
rents distribute themselves in the branches in such a way 38e double index notation appear when the single branch is

to maximize the entropy production in the network. shared between two meshes.
Applying the loop law for each mesh loop in terms of
Il. MESH CURRENTS AND LOOP LAW mesh currents we obtain the system of linear equations, the

number of equations being equal to the number of mesh

We consider a planar netwofkee Fig. 1. Assuming that currents,
network parameters, EMF's and resistances, are fixed, one
can find all currents applying current and loop law to nodes
and loops. However, due to the current law, the currents in
branches are not independent quantities.

Kirchhoff’s laws give no prescription on how to find a set
of independent currents for a given electric network. In the
case of the planar network this problem has been solved by
electrical engineer§s] by introducing the concept of mesh
currents. Let us first define, within the network, the simple
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dS
$=a+bJ+cJZ+dJ3+O(J4). (6)
4

Jp=J,-J Je=J3-1 . . .
v PTh A free term vanishes since it corresponds to the entropy pro-

duction in the equilibrium state. Due to E¢p) coefficients

of all odd powers vanish while>0 due tod;S/dt>0. Put-
5, ting c=R/T, whereR is the resistance we get the well known
. expression for the dissipated electric powd®/dt=RZF.
a=dy-0,

Evidently c>0 impliesR>0.

A linear planar network can be separated into sources of
the forces(EMF’'s) and the passive paftesistors. In the
stationary state there is no change in internal energy of the
resistors while they convert energy from the sources into the
heat given off to the surroundings. The rate of the energy
conversion is given by

FIG. 2. Mesh currents and Kirchhoff’s current law.

2 Ej=RiJi+ 2 R;(3i-J). (D 4Q L
‘ ' Gt = 2RISR G- )% (7)
Note that the system of equatiori¢) incorporates both ! g

Kirchhoff's laws (due to the definition of the mesh currents  Energy released by all sourcéBMF’s) per unit of time is
Here the left hand side of the equation is the algebraic sum of

EMF’s within ith mesh loop. The EMF is positive if mesh dw _ 1 _
current comes out of its positive pole. Otherwise it is nega- dt ~ §|: Bidi + 2%“ B (%= Jy)- (8)
tive. Evidently it holds true that .
E =—E; i#] 2 The factors, in these equations, appears due to the double
1) i ’ counting in the case of internal branches.
and Bearing in mind that resistors do not change their internal
energy we can write, according to the first law of thermody-
Rj=Rj. 3 namics,
We stress that the system of equatighysassumes that the d
o . Q dw
principle of energy conservation holds for each mesh sepa- —_-——=0, 9)
rately (loop law). In the following we show that this system dt  dt

of equations(1) can be alternatively derived applying the j o taking into account Eq€7) and(8) it holds that

maximum entropy production principle under the condition
that the principle of energy conservation is valid for the 1 . 2, 1 Y
whole network as the thermodynamic system. §|: EiJi + 2% Ej(Ji-J)= 2.: Rid + 2% Ri(Ji—J)*.

IIl. CONSERVATION OF THE ENERGY (10

If the system at the fixed absolute temperatlineleases
heat per unit of timelQ/dt, the corresponding entropy pro-

duction is IV. ENTROPY PRODUCTION AND ITS EXTREMUM

IN THE ELECTRIC NETWORK

ds 1dQ . .

—— =, (4) We argue that Kirchhoff’s loop law follows from the prin-

dt Tdt ciple of the maximum overall entropy production in the net-
where indexi, as it is introduced in the theory of nonequi- Work, assuming that the energy conservatip) is satisfied.
librium processe$7], emphasizes that only irreversible en- If there aren meshes, andh associated mesh currents, we
tropy changerise) is considered. have a conditional extremum problem in thalimensional

The entropy production is the function of the thermody-linear space.

namic state of a system. The stationary state of resistor at the Assuming that all resistors in the network are at the same
fixed temperature is defined by the magnitude and the sengemperaturdl the maximum of entropy production occurs at
of the flow of the electric current. Due to the isotropy of the the same point of the-dimensional space of currents as the
resistor the entropy production is invariant with respect tomaximum of generated hefgee Eq(4)].

the flow direction of the current, Standard procedurg8] of solving the conditional extre-
mum introduces Lagrange’s multipliers. In this case one
di_s(_ J)= di_s(‘]). (5) seeks the extremum of the function
dt dt do
Assuming that the stationary state of the resistor is close to F= i AV, (11)
its equilibrium state Taylor expansion of the entropy produc-
tion gives where due to the conditiol0)
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1
v = E Eiidi + EE Eij(Ji—-J)
i i

1
- {E Ridf + 52 Ry(3 —J;)Z] =0. (12
iLj
The functionF now reads

F=(1 —A){E RiJ; + %Z Ry(3 —J;)Z]
)

+>\l; E“Ji+%i2j Eij(Ji—Jj)]. (13)
The solution of the system of equations
Z_: =2(1 _)\)[Rii‘]i +$ Ri(J; - Jj)] + A? E;=0,
(14)

that satisfies the conditiofi2) is represented by the point in

the n-dimensional linear spacg);} in which the function
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this way the equivalence between the maximum entropy pro-
duction principle and Kirchhoff's loop law is established. In
other words we can say that currents in a linear planar net-
work distribute themselves so as to achieve the state of maxi-
mum entropy production.

V. DISCUSSION

There were Ehrenfesf25] who first asked the question if
there exists some function which, like the entropy in the
equilibrium state of an isolated system, achieves its extreme
value in the stationary nonequilibrium state.

The minimum entropy production theorem, attributed to
Prigogine[7], identifies the entropy production due to irre-
versible processes in the system, as a physical function
which becomes extremal in a stationary state. We agree with
Jaynes opinior{9] that Prigogine’s theorem is in fact the
definition of the very special stationary state with zero in-
duced flux, known as the static head state in electrical engi-
neering[5] and in bioenergeticfl0]. It is the quasiequilib-
rium state that can be established close to equilibrium in the

d;S/dt exhibits extremum. The value of Lagrange’s multi- case of linear relationship between forces and fluxes, when
plier X is uniquely determined by the system of equationsinduced force is left free to seek its maximal possible value.

(14) and Eq.(12).

The standard, rather tedious, procedure of determiking
can be avoided in the following way. Let us multiply Eq.

(14) with J; and sum over all mesh currents, i.e.,

2(1 —)\) 2 R”J|2+ E R”(J, _JJ)Jl + )\E E”J, =0.
i ij 1]

(15
Due to the symmetry relation®) and(3) we have
%Eij\]i =—i§j‘, S (16)
and
%Rir]iz:%% Rj(J7+37). (17)

By making use of Eq(16) and(17), Eq. (15) becomes

2(1 —mlE RiJ; + %2 R;(J, —Jj)z}
i ij

+>{E Eidi + %2 E;j (J; —Jj)} =0. (19
i ij

Substituting the term linear in mesh currents in Ef8)
by the term quadratic in mesh currents according to(Eg).
we get

(2 —x)[E RiJ? + %E R;(Ji - JJ-)Z} =0, (19
i ij

i.e., A=2. One easily finds that the system of equati@¥
for A=2 is just the system of linear equatiofis), which
expresses the loop law.

Let us add thaf function for A=2 is then-dimensional

Energy conversion then stops at the level of driving force
and corresponding flux, because induced flux vanishes and
cannot be used to perform any work. One cannot obtain phe-
nomenological equations, such as those found in Refs.
[14,15 or Eg. (1), from Prigogine’s theorem, because that
theorem does not have power of a principle. On the other
hand, phenomenological equations, such as(Eyg.can be
derived from the maximum entropy production principle.

For the one-loop network the maximum entropy produc-
tion principle holds as well. We leave for the reader to repeat
our calculations from Eqg11)<19) in the case of the one-
loop network. The claim that entropy production is minimal
in the stationary state of the one-loop netw§ik] is wrong
on two accounts. First, authof$l] have presented potential
drops as thermodynamical forces, i.e., they make no distinc-
tion between sources and loads and introduce artifical
“forces” and “currents” in the entropy production expression.
In the stationary state the charge conservation law requires
that only one current flows in the one-loop network, which
must be driven by single thermodynamic fol@a algebraic
sum of all EMF’s in the loop Second, the statement about
entropy production minimization in Refl1l] implies that
minimum entropy production theorefi7] holds for a such
network. This is not possible, because a minimum of two
thermodynamic forces and corresponding currents and the
condition of vanishing induced curre(the static head non-
equilibrium condition must exist for the minimum entropy
production theorem to hold.

An arbitrary network with no sources of electromotive
forces(EMF’s) was first considered with respect to the en-
tropy production by Kirchhoff9], Maxwell [12], and Jeans
(see Chap. 357. in Ref13]). Kirchhoff postulated a varia-
tional theorem9], which states that in an arbitrary volume
with fixed surface potential the currents distribute themselves
so as to achieve the state of minimum entropy production.

paraboloid put upside down, i.e., its extreme is maximum. InSince this example contains no sources of EMF’s, it repre-
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sents a continuous extension of discrete network with n@bscures the distinction between energy sources and passive

sources which was considered by MaxwilP] and Jeans elements in the system, between the rate of the work done

(see Chap. 357. in Ref{l3]). These authors came to the and the heat produced.

same conclusion that minimum entropy production governs Besides macroscopic formulation of the maximum en-

current di;tribut!on_, because they did not consider the energuopy production princip|e there exists the microscopic for-

conservation principle. ) o mulation too. It is due to Kohlef17] who demonstrated,
When EMF's and the energy conservation principle aresiarting from the Boltzmann transport equation, that fluxes in

taken into account then the principle of the maximum overaline stationary state of gases distribute themselves in order to
entropy production in the network leads to Kirchhoffs 100p ;.hieve the state of maximum entropy production. Ziman

law and accordingly to observed stationary current distribu 18] extended his work to free electron system in solids and

tion as demonstrated in this paper. Let us note that Jea monstrated how this principle can be used in obtaining

C(_)nS|dere,d an arbltrary,_ not only planar, eleptrlc networkmore accurate solutions of the Boltzmann transport equation.
with EMF’s too. The maximum entropy production principle

is implicitly present in his theorentsee Chap. 358. in Ref. Recently, Dewaf6] has shown, applying Jaynes information

. AT theory formalism of statistical mechanicgl9,2Q, that
[13]). Th|§ means that the current d|str|byt|on n nor‘planarstationary states are characterized by maximum entropy
networks is also determined by the maximum entropy pro- roduction

QUctlon pr_|nC|pIe. Jeans did not define mdepend_ent curr_entg To conclude, it is our belief that the principle of maximum
in an arbitrary network, as we have done by introducing
mesh currents in full agreement with charge conservatio
law. Therefore it is relatively hard to follow his derivation.
Our macroscopic approach is very similar to that of On-
sager who considered the related problem of heat conducti
in an anisotropic crystdl14]. We shall show in a separate
paper(in preparatiointhat an equivalence exists between the

principle of least dissipation of energ4,19 and the maxi- cently that biochemical cycle kinetics close to equilibrium

mum entropy production principle. Onsager was aware of th . . !
fact that the stationary state of heat conduction is in fact th§tate can be described by an analog electrical cif@i,

; . . . and that modeling of photosynthe§®?2] can also be done by
state of maximum entropy productigeee the sixth section . . : N
in Ref.[14]). The system of equations that describes stationEjSIng the maximum entropy production principle. These and

ary processes can be inferred from the maximum entro other older[23] and more recenf6,24 results using this
y pro o . . P rinciple show that the present derivation of Kirchhoff’s loop
production principle both in the case of heat conduction an

in the case of linear planar electric network. The advantageaW in this paper is likely to be only the beginning of the

of the maximum entropy production principle is that it offers \(Ijvifceisﬁr:?eid use of this principle in many different scientific
a better physical insight through the explicit use of the en- P '
ergy conservation law in the conditional extremum problem. ACKNOWLEDGMENT
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